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For a generic decay channel, the partial decay width is:

Γ(p → m+l̄) =

 mp

32π2

(
1−

(
mm

mp

)2
)2
 ∣∣∣∣∣∑

i

C iW i
0(p → m + l̄)

∣∣∣∣∣
2

The form factors can be related to a matrix element The
operators Oi are given by

ORL = εabcua,T (x , t)CPRdb(x , t)PLu
c(x , t)

OLL = εabcua,T (x , t)CPLd
b(x , t)PLu

c(x , t)
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Define a general operator of the form

OΓiΓj = εabcua(x , t)CΓid
b(x , t)Γju

c(x , t)

where Γi are matrices with two spin indices, labelled by,

S = 1 P = γ5

V = γµ Aµ = γµγ5

T = 1
2{γµ, γν} T̃ = γ5

1
2{γµ, γν}

R = PR = 1
2 (1 + γ5) L = PL = 1

2 (1− γ5)

Operators with this structure are also used later in nucleon
correlation functions and in the non-perturbative renormalization
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We could measure the matrix elements 〈m|Oi |N〉 directly

I Known as the direct method

I Three-point functions are required

I Computationally expensive

Alternatively can relate the three-point functions to two-point
functions using Chiral Perturbation Theory

I Known as the indirect method

I Computationally cheaper

I Introduces an additional source of error
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For p → π0 + e+, the chiral perturbation theory gives

W RL
0 (p → π0 + e+) = α(1 + D + F )/

√
2f +O(m2

l /m2
N)

W LL
0 (p → π0 + e+) = β(1 + D + F )/

√
2f +O(m2

l /m2
N)

α and β are low energy constants from the chiral lagrangian
They can be calculated from two–point functions

〈0|ORL|N〉 = αPLu(k, s)

〈0|OLL|N〉 = βPLu(k, s)
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Define a class of two–point functions

fΓ1Γ2,Γ3Γ4(t) =
∑
x

tr
[
〈OΓ1Γ2ŌΓ3Γ4〉P

]

OΓ1Γ2 = εabcua(x , t)CΓid
b(x , t)Γju

c(x , t)

P =
1

2
(1 + γ4)

Example: the proton correlation function∑
x

〈Jp(x , t)J̄p(0)〉 = fPS ,PS(t)
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Strategy:

I First find mN from a correlated fit to the effective mass

meff(t) = log

(
fPS ,PS(t)

fPS ,PS(t + 1)

)
→ mN t � 0

I Then find GN from a correlated fit to an effective amplitude

GN,eff =
√

2fPS ,PS emN t → GN t � 0

I Finally to calculate α and β we use a ratio of two–point
functions

Rα(t) = 2GN
fRL,PS(t)

fPS ,PS(t)
→ α Rβ(t) = 2GN

fLL,PS(t)

fPS ,PS(t)
→ β
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I Calculation is carried out on 2+1 flavour Domain Wall
Fermion ensembles

I Nearly exact chiral symmetry
I Inverse lattice spacing a−1 = 1.73(3) GeV

I Two different lattice volumes

I V = 163 × 32 ≈ 1.8fm3

I V = 243 × 64 ≈ 2.7fm3

I One strange quark with mass
ams = 0.04

I Two degenerate light quarks with masses
amu/d = 0.005*, 0.01, 0.02 or 0.03
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Fit by minimising a correlated χ2

χ2(p) =
∑
t,t′

[peff(t)− p] C−1
tt′
[
peff(t ′)− p

]
With correlation Matrix

Ctt′ =
1

Nboot

Nboot∑
n=1

[
p

(n)
eff (t)− p̄eff(t)

] [
p

(n)
eff (t ′)− p̄eff(t ′)

]
.

Bootstrap to get central value and errors
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Proton decay matrix elements from
chirally symmetric lattice QCDLow energy constant: α

0 4 8 12 16
t

0.002

0.003

0.004

0.005

0.006

0.007

0.008

-R
α

LL
HL

(b)

0 0.01 0.02 0.03
a(mq+mres)

0.002

0.003

0.004

0.005

0.006

0.007

0.008

-a
3 α

(a)

14 / 27



Paul Cooney
The University of Edinburgh, RBC-UKQCD
collaboration

Proton decay matrix elements from
chirally symmetric lattice QCDLow energy constant: β
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Proton decay matrix elements from
chirally symmetric lattice QCDSystematic Errors

I Finite volume errors

I Chiral Extrapolation errors

I (Continuum Extrapolation errors)

I Errors in renormalisation

I (Error in Chiral Perturbation Theory)
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Proton decay matrix elements from
chirally symmetric lattice QCDNPR

I Non-perturbative MOM scheme renormalisation of the
Rome-Southampton group

I The renormalised operators are

OA
ren = ZABOB

latt

I A and B label the spin structure, eg LL

I ZAB is the mixing matrix

I OLL and ORL mix with a 3rd operator OA(LV )

⇒ ZAB is a 3× 3 matrix

I Exponentially accurate chiral symmetry from Domain Wall
Fermions should suppress operator mixing
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Proton decay matrix elements from
chirally symmetric lattice QCD

We want to calculate the non-perturbative amputated 3-quark
vertex function of these operators

GA
abc,αβγδ(p

2) = εabc(CΓ)α′β′Γ′δγ′〈Qa′a
α′α(p)Qb′b

β′β(p)Qc ′c
γ′γ(p)〉

where
Qa′a

α′α = 〈Sa′a′′
α′α′′(p)〉−1Sa′′a

α′′α(p)

and Γ and Γ′ are the matrices which appear in OA
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Proton decay matrix elements from
chirally symmetric lattice QCDI The renormalization condition in the RI–Mom Scheme is

Z
−3/2
q ZBCMCA = δBA

I Where the matrix M is,

MAB = GA
abc,αβγδ(p

2)PB
abc,βαδγ

I and the projection matrices PA
abc,βαδγ are chosen so that the

renormalization condition is satisfied in the free field case
where Zq = 1 and ZBC = δBC .

I ZAB can then be calculated from MAB using the
renormalization condition
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Proton decay matrix elements from
chirally symmetric lattice QCDMAB
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Proton decay matrix elements from
chirally symmetric lattice QCD

I Perform a chiral extrapolation

I Match to the MS scheme at 2GeV

I This gives
UMS←latt(2GeV )LL = 0.662(10)

UMS←latt(2GeV )RL = 0.664(8)

I Additional systematic error of 8% from the matching
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Proton decay matrix elements from
chirally symmetric lattice QCDSummary
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[16] This work

I α = -0.0112(12)(22)

I β = 0.0120(13)(23)
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Proton decay matrix elements from
chirally symmetric lattice QCDOutlook

I The direct calculation is currently underway

I Example: Preliminary results for the W LL
0 (p → π+ + ν), on

the 163 × 32 lattice, with valence quark mass amu = 0.03
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W
0LL

Preliminary Data
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Proton decay matrix elements from
chirally symmetric lattice QCD

I Writing the proton lifetime as,

Γ = LEC2 × AQCD × AGUT

I We can put bounds on the GUT scale physics:

Decay Mode Lifetime bound(yrs) AGUT bound (M−4
GUT)

p → e+π0 > 8.2× 1033 < 44

p → e+π0 > 8.2× 1033 < 37
p → K+ν̄ > 2.3× 1033 < 76
n → K 0ν̄ > 1.3× 1032 < 733
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Proton decay matrix elements from
chirally symmetric lattice QCD

I For example:
p → π0e+ via X Boson Exchange
Minimal SU(5) SUSY GUT

I AGUT is given by

AGUT =
g4
5 A2

R

M4
X

∣∣1 + (1 + V 2
ud)2

∣∣
I Can put a bound on MX

MX > 5× 1015
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